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• Exam duration.  The exam is scheduled to last 75 minutes. 

• Materials allowed.  You may use books, notes, your laptop/tablet, and a calculator.  

• Disable all networks.  Please disable all network connections on all computer systems. 

You may not access the Internet or other networks during the exam. 

• No AI tools allowed.  As mentioned on the course syllabus, you may not use GPT or other 

AI tools during the exam. 

• Electronics.  Power down phones.  No headphones.  Mute your computer systems. 

• Fully justify your answers. When justifying your answers, reference your source and page 

number as well as quote the content in the source for your justification.  You could 

reference homework solutions, test solutions, etc. 

• Matlab. No question on the test requires you to write or interpret Matlab code.  If you base 

an answer on Matlab code, then please provide the code as part of the justification. 

• Put all work on the test.  All work should be performed on the quiz itself.  If more space 

is needed, then use the backs of the pages. 

• Academic integrity.  By submitting this exam, you affirm that you have not received help 

directly or indirectly on this test from another human except the proctor for the test, and 

that you did not provide help, directly or indirectly, to another student taking this exam. 

 

 

 

Problem Point Value Your score Topic 

1 24  Sinusoidal Signals 

2 26  Fourier Series 

3 26  Sampling and Aliasing 

4 24  Time-Frequency Analysis 

Total 100   

 

 



Problem 1.1 Sinusoidal Signals.  24 points.  

Consider the sinusoidal signal 

𝑥(𝑡) = 𝐴 sin(2 𝜋 𝑓0 𝑡 +  𝜃) with 

• amplitude 𝐴 

• continuous-time frequency f0 in Hz 

• phase 𝜃 in radians 

From the plot of 𝑥(𝑡) on the right, 

 

(a) Estimate the amplitude 𝐴.  Explain how you 

estimated the value of this parameter.  6 points. 

 

In a sinusoidal signal, the peak occurs at 𝑨 

and valley occurs at −𝑨  because the values of cosine are 

in the interval [−𝟏, 𝟏].  From the plot, 𝑨 = 𝟐. 

(b) Estimate the continuous-time frequency f0 in Hz.  Explain how you estimated the value of this 

parameter.  6 points. 

Approach #1:  The duration from one peak to the next is about 4ms and this represents the 

period 𝑻𝟎 of the sinusoidal signal.  The fundamental frequency 𝒇𝟎 =
𝟏

𝑻𝟎
=

𝟏

𝟎.𝟎𝟎𝟒𝒔
= 𝟐𝟓𝟎 𝐇𝐳 . 

Approach #2:  From counting the peaks, the plot contains exactly five periods and lasts for 

𝟎.𝟎𝟐𝟎𝒔.  Hence, the fundamental period is 𝑻𝟎 = 𝟎.𝟎𝟎𝟒𝒔 and the fundamental frequency is 

𝒇𝟎 =
𝟏

𝑻𝟎
=

𝟏

𝟎.𝟎𝟎𝟒𝒔
= 𝟐𝟓𝟎 𝐇𝐳. 

Approach #3: The plot contains 10 pairs of zero crossings over the 𝟎. 𝟎𝟐𝟎𝒔 duration of the 

signal.  Hence, there are 5 periods in 𝟎.𝟎𝟐𝟎𝒔.  The period is 𝑻𝟎 =
𝟎.𝟎𝟐𝟎𝒔

𝟓
= 𝟎.𝟎𝟎𝟒𝒔 and the 

frequency is 𝒇𝟎 =
𝟏

𝑻𝟎
=

𝟓

𝟎.𝟎𝟐𝟎𝒔
= 𝟐𝟓𝟎 𝐇𝐳 .  

(c) Estimate the phase 𝜃 in radians.  Explain how you estimated the value of this parameter. 

6 points. 

The amplitude of the sine wave is 𝟎 at 𝒕 = 𝟎, which means 𝜽 = 𝟎 rad. 

(d) What is the phase of the signal 𝑥(𝑡 − 0.001)?  Please show your intermediate steps.  6 points. 

𝒙(𝒕 − 𝟎.𝟎𝟎𝟏) =  𝑨 𝐬𝐢𝐧(𝟐 𝝅 𝒇𝟎 (𝒕 − 𝟎. 𝟎𝟎𝟏𝒔) +  𝜽) = 𝑨 𝐜𝐨𝐬(𝟐 𝝅 𝒇𝟎 𝒕 −  𝟐 𝝅 𝒇𝟎 (𝟎.𝟎𝟎𝟏) +  𝜽) 

Hence, the phase is −𝟐 𝝅 𝒇𝟎 (𝟎. 𝟎𝟎𝟏𝒔) +  𝜽 =  −𝟐 𝝅 (𝟐𝟓𝟎 𝑯𝒛)(𝟎. 𝟎𝟎𝟏𝒔) +  𝟎 = −𝟎. 𝟓 𝝅 .  

milliseconds 

Note: 1 millisecond = 10-3 seconds 

 SPFirst Sec. 2-1 to 2-3 Homework Prob. 1.1 Lecture Slide 1-16  Fall 2024 Midterm 1.1 

 Lecture Slide 2-4  SPFirst Sec. 2-3.2 



Problem 1.2.  Fourier Series Properties.  26 points. 

The continuous-time Fourier series has several properties. 

In this problem, 𝑥(𝑡) is periodic with fundamental frequency f0 and Fourier series coefficients 𝑎𝑘. 

For example, if 𝑦(𝑡) = 𝐴 𝑥(𝑡), the Fourier series coefficients 𝑏𝑘 for 𝑦(𝑡) can be found using 𝑏𝑘 = 𝐴 𝑎𝑘: 

𝑦(𝑡) = 𝐴 𝑥(𝑡) = 𝐴 ∑ 𝑎𝑘  𝑒
𝑗2𝜋(𝑘𝑓0)𝑡 = ∑ 𝐴 𝑎𝑘  𝑒

𝑗2𝜋(𝑘𝑓0)𝑡

∞

𝑘=−∞

∞

𝑘=−∞

 

For the following expressions, derive the relationship between the Fourier series coefficients 𝑏𝑘 for 𝑦(𝑡) 
and the Fourier series coefficients 𝑎𝑘 for 𝑥(𝑡) where 

𝑎𝑘 =
1

𝑇0
∫ 𝑥(𝑡) 𝑒−𝑗𝑘𝜔0𝑡  𝑑𝑡
𝑇0

0

 

(a) 𝑦(𝑡) = 𝑥1(𝑡) + 𝑥2(𝑡) where 𝑥1(𝑡) has a fundamental frequency f0 and Fourier series coefficients 𝑐𝑘 

and 𝑥2(𝑡) has a fundamental frequency f0 and Fourier series coefficients 𝑑𝑘.  8 points. 

 

 

 

 

 

 

(b) 𝑦(𝑡) = 𝑒−𝑗 2 𝜋 𝑓0  𝑡 𝑥(𝑡).  This is a type of amplitude modulation.  9 points. 

 

 

 

 

 

 

(c) 𝑦(𝑡) = 𝑥 (
𝑡

2
). 9 points. 

 

 

 

  



Problem 1.3.  Sampling and Aliasing.  26 points. 

A frequency of 46 kHz is higher than the normal audible range of 20 Hz to 20 kHz for a human being. 

Consider a continuous-time signal x(t) = cos(2  f0 t) where f0 = 46 kHz. 

Sample the signal using a sampling rate of fs = 48 kHz. 

(a) Derive a formula for the discrete-time signal x[n] that results from sampling x(t).  6 points. 

Sampling in the time domain can be modeled as an instantaneous closing and opening of a 

switch. Each time that the switch is closed, the input is gated to the output.  In practice, this 

could be implemented by a pass transistor with a sampling clock feeding the gate terminal. 

𝒙[𝒏] = 𝒙(𝒕)|𝒕=𝒏𝑻𝒔 = 𝐜𝐨𝐬(𝟐 𝝅 𝒇𝟎 (𝒏 𝑻𝒔)) =  𝐜𝐨𝐬(𝟐 𝝅 𝒇𝟎  (
𝒏

𝒇𝒔
)) = 𝐜𝐨𝐬 (𝟐𝝅 (

𝒇𝟎
𝒇𝒔
) 𝒏) 

The discrete-time frequency corresponding to continuous-time frequency f0 is 𝝎𝟎 = 𝟐𝝅
𝒇𝟎

𝒇𝒔
 

(b) Determine the discrete-time frequency to which the continuous-time frequency of f0 will alias. 

9 points. 

Approach #1: Using a time-domain approach. 

𝒙[𝒏] = 𝐜𝐨𝐬 (𝟐𝝅(
𝒇𝟎
𝒇𝒔
) 𝒏) = 𝐜𝐨𝐬 (𝟐𝝅 (

𝟒𝟔 𝐤𝐇𝐳

𝟒𝟖 𝐤𝐇𝐳
)𝒏) = 𝐜𝐨𝐬 (𝟐𝝅(

𝟐𝟑 

𝟐𝟒
)𝒏) 

We can subtract an offset in the argument of 2  n without changing x[n]: 

𝐜𝐨𝐬 (𝟐𝝅 (
𝟐𝟑

𝟐𝟒
)𝒏 − 𝟐𝝅𝒏) = 𝐜𝐨𝐬 (𝟐𝝅(

𝟐𝟑

𝟐𝟒
− 𝟏)𝒏) = 𝐜𝐨𝐬 (𝟐𝝅 (−

𝟏

𝟐𝟒
)𝒏) = 𝐜𝐨𝐬 (𝟐𝝅(

𝟏

𝟐𝟒
)𝒏) 

Continuous-time frequency of f0 will alias to a discrete-time frequency of 𝟐𝝅
𝟏

𝟐𝟒
 rad/sample. 

Approach #2: Using a frequency-domain approach. 

In the frequency domain, sampling of 𝒙(𝒕) will include the discrete-time frequencies 

corresponding to continuous-time frequencies 46 kHz and -46 kHz as well as replicas located 

at offsets of integer multiples of 2  rad/sample in discrete-time frequency (where 

2 rad/sample corresponds to the sampling rate of 48 kHz in continuous-time frequency).  

Due to the Sampling Theorem, the reconstructed frequencies are from -½ fs to ½ fs and hence 

the aliased continuous-time frequency is 2 kHz.  The continuous-time frequencies of 𝒙(𝒕) are 

shown in solid lines with the red solid line representing 46 kHz and the blue solid line 

representing -46 kHz.  The dashed lines show some of the replicas. 

 

 

 

(c) What is the equivalent continuous-time frequency for the aliased discrete-time frequency in (b)? 

9 points. 

With 𝝎𝟏 = 𝟐𝝅
𝒇𝟏

𝒇𝒔
 and fs = 48 kHz, we have f1 = 2 kHz. 

(d) Is the aliased frequency audible?  2 points. 

Yes, the aliased frequency of 2 kHz is in the audible range of 20 Hz to 20 kHz. 



Problem 1.2 Supplemental information not expected for students to have provided in their answers. 

Matlab code to show aliasing in time domain 

Plot x(t) = cos(2  f0 t) 

 

Plot samples x(n Ts) superimposed on 

x(t) = cos(2  f0 t) 

 

Plot x1(t) = cos(2  f1 t) and x(n Ts)  

superimposed on x(t) = cos(2  f0 t) 

 

  

%% Part 1: Define Signals 

wHat = 2*pi*(1/24); 

nmax = 24; 

n = 0:nmax; 

x1 = cos(wHat*n); 

x = cos(2*pi*(23/24)*n); 

 

fs = 1;     %% fs=1 to align DT and CT 

f1 = 2/48;  %% Actual fs goes in denom 

w1Hat = 2*pi*f1/fs; 

period = round(fs/f1); 

f0 = 46/48; %% Actual fs goes in denom 

w0Hat = 2*pi*f0/fs; 

Ts = 1/fs; 

tmax = (nmax/period)*(1/f1); 

t = 0 : (Ts/100) : tmax; 

x1cont = cos(2*pi*f1*t); 

xcont = cos(2*pi*f0*t); 

  

%% Part 2: Generate Plots 

figure; 

plot(t, xcont, 'm-', 'LineWidth', 1); 

  
figure; 

plot(t, xcont, 'm-', 'LineWidth', 1); 

hold; 

stem(n, x1, 'Linewidth', 2, 

'MarkerEdgeColor', 'black'); 

stem(n, x, 'Linewidth', 2, 

'MarkerEdgeColor', 'black'); 

  
figure; 

plot(t, xcont, 'm-', 'LineWidth', 1); 

hold; 

stem(n, x1, 'Linewidth', 2, 

'MarkerEdgeColor', 'black'); 

stem(n, x, 'Linewidth', 2, 

'MarkerEdgeColor', 'black'); 

plot(t, x1cont, 'b-', 'LineWidth', 2); 

 



Problem 1.4.  Time-Frequency Analysis.  24 points. 

This problem is related to mini-project #1.  Please justify your answers. 

The continuous-time signal 𝑥(𝑡) is defined between 0 ≤ 𝑡 ≤ 0.1. The discrete-time signal 𝑥[𝑛] is obtained by 

sampling 𝑥(𝑡) at a rate 𝑓𝑠 = 200 Hz. The plot of 𝑥(𝑡) and 𝑥[𝑛] are provided below. 

𝑥(𝑡) =

{
 

 
cos2(2𝜋 20 𝑡) 0 ≤ 𝑡 < 0.025

sin(2𝜋 80 𝑡) 0.025 ≤ 𝑡 < 0.05
− sin(2𝜋 40 𝑡) 0.05 ≤ 𝑡 < 0.075

−cos2(2𝜋 40 𝑡) 0.075 ≤ 𝑡 ≤ 0.1

 

 

 
A complex image signal 𝑆[𝑚, 𝑘] is obtained by taking the short-time Fourier transform of 𝑥[𝑛] using non-

overlapping rectangular windows 𝑤[𝑛] of length 𝑁 = 5 samples: 

 𝐒[𝑚, 𝑘] = 𝐒𝐓𝐅𝐓{𝑥[𝑛]}[𝑚, 𝑘] = ∑ 𝑥[𝑛] 𝑤[𝑛 − 𝑚] 𝑒−𝑗2𝜋
𝑘
𝑁
𝑛

𝑁−1

𝑛=0

 

The plots below visualize the components of 𝐒[𝑚, 𝑘]. Label each plot as one of the four options: 

A. Magnitude: |𝐒[𝑚, 𝑘]|  Plot (2) B. Phase: ∠𝐒[𝑚, 𝑘]  Plot (3) 

C. Real part: Re{𝐒[𝑚, 𝑘]}  Plot (4) D. Imaginary part: Im{𝐒[𝑚, 𝑘]}  Plot (1) 

  

  
 

Justification for the answers are on the next page.  



Note: The printed version of the exam contained the following typos: 

cos2(2π 20 t) instead of sin2(2π 20 t) 
−cos2(2π 40 t) instead of −sin2(2π 40 t) 

If the STFT images were generated using 𝑥(𝑡) as printed originally, the structure of all four 

STFT components would remain identical, but the plots of the phase, real part, and imaginary 

part would have slightly different values. 
 

Solution: 

The time period from 𝒕 = 𝟎 to 𝒕 = 𝟎. 𝟏 corresponds to four windows, each with 5 samples each. 𝒙(𝒕) 
contains different sinusoidal components during each window. 

Let 𝒘𝟏(𝒕) = 𝟏[𝟎,𝟎.𝟎𝟐𝟓), 𝒘𝟐(𝒕) = 𝟏[𝟎.𝟎𝟐𝟓,𝟎.𝟎𝟓), 𝒘𝟑(𝒕) = 𝟏[𝟎.𝟎𝟓,𝟎.𝟎𝟕𝟓), and 𝒘𝟒(𝒕) = 𝟏[𝟎.𝟎𝟕𝟓,𝟎.𝟏) where 

𝟏[𝒂,𝒃) = {
𝟏 𝒂 ≤ 𝒕 ≤ 𝒃
𝟎 𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

 

Then, we can express 𝒙(𝒕) as a sum of transient sinusoidal components: 

𝒙(𝒕) = 𝐬𝐢𝐧𝟐(𝟐𝝅 𝟐𝟎 𝒕)⏟        
𝒙𝟏(𝒕)

𝒘𝟏(𝒕) + 𝐬𝐢𝐧(𝟐𝝅 𝟖𝟎 𝒕)⏟        
𝒙𝟐(𝒕)

𝒘𝟐(𝒕) + −𝐬𝐢𝐧(𝟐𝝅 𝟒𝟎 𝒕)⏟          
𝒙𝟑(𝒕)

𝒘𝟑(𝒕)

+ −𝐬𝐢𝐧𝟐(𝟐𝝅 𝟒𝟎 𝒕)⏟          
𝒙𝟒(𝒕)

𝒘𝟒(𝒕) 

Since 𝐬𝐢𝐧𝟐 𝜽 = 𝟎. 𝟓 − 𝟎. 𝟓 𝐜𝐨𝐬(𝟐𝜽), 
𝒙𝟏(𝒕) = 𝟎. 𝟓 − 𝟎. 𝟓 𝐜𝐨𝐬(𝟐𝝅 𝟒𝟎 𝒕) , 𝒙𝟒(𝒕) = −𝟎. 𝟓 + 𝟎. 𝟓 𝐜𝐨𝐬(𝟐𝝅 𝟖𝟎 𝒕) 

By examining the frequency components in each window, we can determine which plots correspond 

to which STFT components. 

Col. Time [seconds] Time [samples] Signal value Frequencies present 

1 𝟎 ≤ 𝒕 < 𝟎. 𝟎𝟐𝟓 𝟎 ≤ 𝒏 < 𝟓 𝟎. 𝟓 − 𝟎. 𝟓 𝐜𝐨𝐬(𝟐𝝅 𝟒𝟎 𝒕) 𝟎 Hz, ±40 Hz 

2 𝟎. 𝟎𝟐𝟓 ≤ 𝒕 < 𝟎. 𝟎𝟓 𝟓 ≤ 𝒏 < 𝟏𝟎 𝐬𝐢𝐧(𝟐𝝅 𝟖𝟎 𝒕) ±𝟖𝟎 Hz 

3 𝟎. 𝟎𝟓 ≤ 𝒕 < 𝟎. 𝟎𝟕𝟓 𝟏𝟎 ≤ 𝒏 < 𝟏𝟓 − 𝐬𝐢𝐧(𝟐𝝅 𝟒𝟎 𝒕) ±𝟒𝟎 Hz 

4 𝟎. 𝟎𝟕𝟓 ≤ 𝒕 < 𝟏 𝟏𝟓 ≤ 𝒏 < 𝟐𝟎 
−𝟎. 𝟓
+ 𝟎. 𝟓 𝐜𝐨𝐬(𝟐𝝅 𝟖𝟎 𝒕) 

𝟎 Hz, ±80 Hz 

 

For a real signal, the Fourier series is conjugate symmetric. Therefore, the imaginary component of 

a real signal is always zero at 𝟎 Hz. Only plot (1) is zero at 0 Hz for all values of time.  Plot (1) 

corresponds to the imaginary component. 

 

The magnitude of a complex number is non-negative. Only plot (2) is non-negative. Plot (2) 

corresponds to the magnitude component. 

 

The phase is zero for a DC offset and 𝝅 for a negative DC offset. Plot (3) corresponds to the phase.  

 

The real component at 0 Hz is the average value. The average value of 𝒙(𝒕) is 0.5 in the first 

window, 0 in the second and third windows, and -0.5 in the last window. Plot (4) corresponds to the 

real part. 

  



Matlab code to produce the plots for problem 1.4. 

fs = 200; 

t = linspace(0,0.1,1000); 

nTs = linspace(0,0.1-1/fs,0.1*fs); 

w1 = @(t) 1.0*(0<=t & t<0.025); 

w2 = @(t) 1.0*(0.025<=t & t<0.05); 

w3 = @(t) 1.0*(0.05<=t & t<0.075); 

w4 = @(t) 1.0*(0.075<=t & t<=0.1); 

x1 = @(t) 0.5-0.5*cos(2*pi*40*t); 

x2 = @(t) sin(2*pi*80*t); 

x3 = @(t) -sin(2*pi*40*t); 

x4 = @(t) -0.5+0.5*cos(2*pi*80*t); 

x = @(t) x1(t).*w1(t) + x2(t).*w2(t) + x3(t).*w3(t) + x4(t).*w4(t); 

figure; plot(t,x(t),'-k','linewidth',1.2); 

hold on; stem(nTs,x(nTs),'filled','k','linewidth',1,'MarkerSize',3); 

xlabel('Time [seconds]','Interpreter','latex') 

ylabel('$$x(t)$$','Interpreter','latex') 

set(gca,'TickLabelInterpreter','latex') 

ylim([-1,1]) 

set(gca,'XTick',[0,0.025,0.05,0.075,0.1]); 

grid on; 

  

X = reshape(x(nTs),5,4); 

S = (1/5)*fftshift(fft(X),1); 

x = [0,0.025,0.05,0.075]; 

y = [80,40,0,-40,-80]; 

  

Sr = real(S); Sr(abs(Sr)<1e-5) = 0; 

figure; heatmap(x,y,Sr); colormap('gray'); colormap(flipud(colormap)); caxis([-

1,1]); 

xlabel('Time [s]'); ylabel('Frequency [Hz]') 

set(gca,'Interpreter','latex') 

title('(4)') 

  

Si = imag(S); Si(abs(Si)<1e-5) = 0; 

figure; heatmap(x,y,Si); colormap('gray'); colormap(flipud(colormap)); caxis([-

1,1]); 

xlabel('Time [s]'); ylabel('Frequency [Hz]') 

set(gca,'Interpreter','latex') 

title('(1)') 

  

Sm = abs(S); Sm(abs(S)<1e-5) = 0; Sm(abs(Sm-0.5)<1e-5) = 0.5; 

figure; heatmap(x,y,Sm); colormap('gray'); colormap(flipud(colormap)); 

caxis([0,1]); 

xlabel('Time [s]'); ylabel('Frequency [Hz]') 

set(gca,'Interpreter','latex') 

title('(2)') 

  

Sp = angle(S); Sp(abs(Sp)<1e-5) = 0; Sp(abs(S)<1e-5) = nan;  

figure; heatmap(x,y,Sp); colormap('gray'); colormap(flipud(colormap)); caxis([-

pi,pi]); 

xlabel('Time [s]'); ylabel('Frequency [Hz]') 

set(gca,'Interpreter','latex') 

title('(3)') 


