The University of Texas at Austin
Dept. of Electrical and Computer Engineering
Midterm #1 Solution 1.0

Date: October 2, 2025 Course: EE 313 Evans

Name:

Last, First

Exam duration. The exam is scheduled to last 75 minutes.

Materials allowed. You may use books, notes, your laptop/tablet, and a calculator.
Disable all networks. Please disable all network connections on all computer systems.
You may not access the Internet or other networks during the exam.

No Al tools allowed. As mentioned on the course syllabus, you may not use GPT or other
Al tools during the exam.

Electronics. Power down phones. No headphones. Mute your computer systems.

Fully justify your answers. When justifying your answers, reference your source and page
number as well as quote the content in the source for your justification. You could
reference homework solutions, test solutions, etc.

Matlab. No question on the test requires you to write or interpret Matlab code. If you base
an answer on Matlab code, then please provide the code as part of the justification.

Put all work on the test. All work should be performed on the quiz itself. If more space
is needed, then use the backs of the pages.

Academic integrity. By submitting this exam, you affirm that you have not received help
directly or indirectly on this test from another human except the proctor for the test, and
that you did not provide help, directly or indirectly, to another student taking this exam.

Problem | Point Value Your score Topic
1 24 Sinusoidal Signals
2 26 Fourier Series
3 26 Sampling and Aliasing
4 24 Time-Frequency Analysis
Total 100
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Problem 1.1 Sinusoidal Signals. 24 points. :
Consider the sinusoidal signal 5
x(t) =Asin(2m fy t + 0) with

e amplitude A
e continuous-time frequency fo in Hz
e phase 0 in radians

From the plot of x(t) on the right,

(a) Estimate the amplitude A. Explain how you
estimated the value of this parameter. 6 points.

8 -6 E 2 0 2 Kl 6 8 10 12

In a sinusoidal signal, the peak occurs at A milliseconds
and valley occurs at —A because the values of cosine are prmmemeeees
in the interval [—1,1]. From the plot, A = 2. . Note: 1 millisecond = 10~ seconds

......................................................

(b) Estimate the continuous-time frequency fo in Hz. Explain how you estimated the value of this
parameter. 6 points.
Approach #1: The duration from one peak to the next is about 4ms and this represents the

period T of the sinusoidal signal. The fundamental frequency f, = Ti = 00:)48 = 250 Hz.
0 .

Approach #2: From counting the peaks, the plot contains exactly five periods and lasts for

0.020s. Hence, the fundamental period is Ty = 0.004s and the fundamental frequency is

1 1
fo= o= 0008 250 Hz.

Approach #3: The plot contains 10 pairs of zero crossings over the 0. 020s duration of the
signal. Hence, there are 5 periods in 0.020s. The period is T¢ = 00295 — 0.004s and the

frequency is f( = Tio = 0_05205 = 250 Hz.

(c) Estimate the phase 8 in radians. Explain how you estimated the value of this parameter.
6 points.

The amplitude of the sine wave is 0 at £ = 0, which means 6 = 0 rad.
(d) What is the phase of the signal x(t — 0.001)? Please show your intermediate steps. 6 points.
x(t—0.001) = Asin(2m fo (t—0.001s) + 8) =Acos2mfot— 2mf, (0.001) + 0)
Hence, the phaseis —2 m f, (0.001s) + 6 = —2 w (250 Hz)(0.001s) + 0 = —-0.5 7.
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Problem 1.2. Fourier Series Properties. 26 points.
The continuous-time Fourier series has several properties.
In this problem, x(t) is periodic with fundamental frequency fo and Fourier series coefficients a,.

For example, if y(t) = A x(t), the Fourier series coefficients by for y(t) can be found using by, = A ay:

y() = Ax(t) = A Z a, et — Z A a, el R

k=—o00 k=—c0

For the following expressions, derive the relationship between the Fourier series coefficients by, for y(t)
and the Fourier series coefficients a; for x(t) where

1 (To .
ar = — | x(t) e~ Jk@ot d¢
Ty 0

(@) y(t) = x,(t) + x,(t) where x,(t) has a fundamental frequency fo and Fourier series coefficients ¢,
and x, (t) has a fundamental frequency fo and Fourier series coefficients d. &8 points.

(b) y(t) = e /2™ /ot x(¢t). This is a type of amplitude modulation. 9 points.

(c) y(t) =x G) 9 points.



Problem 1.3. Sampling and Aliasing. 26 points.

A frequency of 46 kHz is higher than the normal audible range of 20 Hz to 20 kHz for a human being.
Consider a continuous-time signal x(#) = cos(2 7 fo t) where fo = 46 kHz.

Sample the signal using a sampling rate of fs = 48 kHz.

(a) Derive a formula for the discrete-time signal x[#] that results from sampling x(¢). 6 points.

Sampling in the time domain can be modeled as an instantaneous closing and opening of a
switch. Each time that the switch is closed, the input is gated to the output. In practice, this
could be implemented by a pass transistor with a sampling clock feeding the gate terminal.

x[n] = x()|—ur, = cos(2 7 fo (nTy)) = cos <2 7 fo (%)) = cos (Zn (?) n)

The discrete-time frequency corresponding to continuous-time frequency fo is wg = 271’;—0
s

(b) Determine the discrete-time frequency to which the continuous-time frequency of fo will alias.
9 points.

Approach #1: Using a time-domain approach.

x[n] = cos (Zn (%) n) = cos (271' (:g :EE;) n) = cos (Zn (%) n)

We can subtract an offset in the argument of 2 © n without changing x[n]:

cos(om (22 ) = s (o (5 3)) = o 1)) = s o ()

Continuous-time frequency of fo will alias to a discrete-time frequency of Zn% rad/sample.

Approach #2: Using a frequency-domain approach.

In the frequency domain, sampling of x(t) will include the discrete-time frequencies
corresponding to continuous-time frequencies 46 kHz and -46 kHz as well as replicas located
at offsets of integer multiples of 2 =w rad/sample in discrete-time frequency (where
27 rad/sample corresponds to the sampling rate of 48 kHz in continuous-time frequency).
Due to the Sampling Theorem, the reconstructed frequencies are from -%; fs to /2 fs and hence
the aliased continuous-time frequency is 2 kHz. The continuous-time frequencies of x(t) are
shown in solid lines with the red solid line representing 46 kHz and the blue solid line
representing -46 kHz. The dashed lines show some of the replicas.

f T T T T
: : ! I 1 (kHz)

=50  -46 -2 2 46 50
(c) What is the equivalent continuous-time frequency for the aliased discrete-time frequency in (b)?
9 points.
With w, = 211? and f; = 48 kHz, we have fi = 2 kHz.

s

(d) Is the aliased frequency audible? 2 points.
Yes, the aliased frequency of 2 kHz is in the audible range of 20 Hz to 20 kHz.



Problem 1.2 Supplemental information not expected for students to have provided in their answers.

Matlab code to show aliasing in time domain
Plot x(#) = cos(2 & fo ?)
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Plot samples x(n 7s) superimposed on
x(f) =cos(2 w fo ?)
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Plot x1(f) = cos(2 = f1 ?) and x(n T5)
superimposed on x(7) = cos(2 & fo 1)
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%% Part 1: Define Signals
wHat 2*pi* (1/24);

nmax 24;

n = 0:nmax;

x1 = cos (wHat*n);

X = cos (2*pi* (23/24) *n);

fs 1;

f1 2/48;
wlHat = 2*pi*fl/fs;
period = round(fs/fl);
f0 = 46/48;
wOHat = 2*pi*f0/fs;

Ts = 1/fs;

tmax = (nmax/period)* (1/f1l);
t =0 : (Ts/100) : tmax;
xlcont = cos(2*pi*fl*t);
xcont = cos (2*pi*f0*t);

%% Part 2:
figure;
plot(t, xcont, 'm-', 'LineWidth',

Generate Plots

figure;
plot(t, xcont,
hold;

stem(n, x1, 'Linewidth', 2,
'MarkerEdgeColor', 'black');
stem(n, x, 'Linewidth', 2,
'MarkerEdgeColor', 'black');

'm-', 'LineWidth',

figure;

plot(t, xcont, 'm-',
hold;

stem(n, x1, 'Linewidth', 2,
'MarkerEdgeColor', 'black');
stem(n, x, 'Linewidth', 2,
'MarkerEdgeColor', 'black');
plot(t, xlcont, 'b-', 'LineWidth',

'LineWidth"',

%% fs=1 to align DT and CT
%% Actual fs goes in denom

%% Actual fs goes in denom

1);

1),

1);

2);




Problem 1.4. Time-Frequency Analysis. 24 points.
This problem is related to mini-project #1. Please justify your answers.

The continuous-time signal x(t) is defined between 0 < t < 0.1. The discrete-time signal x[n] is obtained by
sampling x(t) at a rate f; = 200 Hz. The plot of x(t) and x[n] are provided below.
1— T

cos?2(2m20t) 0 <t<0.025
©) = sin2r80t) 0.025<t<0.05 = o
M= —sin(2r 40t)  0.05 < t < 0.075

—cos?(2mr40t) 0.075<t<0.1

0.05 0.075 0.1

Time [seconds]
A complex image signal S[m, k] is obtained by taking the short-time Fourier transform of x[n] using non-

overlapping rectangular windows w[n] of length N = 5 samples:
N-1

0 0.025

S[m, k] = STFT{x[n]}[m, k] = Z x[n] wln — m] e /2"

n=0
The plots below visualize the components of S[m, k]. Label each plot as one of the four options:
A. Magnitude: |S[m, k]| Plot (2) B. Phase: £S[m, k] Plot (3)
C. Real part: Re{S[m, k]} Plot (4) D. Imaginary part: Im{S[m, k]} Plot (1)
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Justification for the answers are on the next page.



Note: The printed version of the exam contained the following typos:

cos?(2m 20 t) instead of sin?(2m 20 t)
— cos?(2m 40 t) instead of — sin?(2m 40 t)

If the STFT images were generated using x(t) as printed originally, the structure of all four
STFT components would remain identical, but the plots of the phase, real part, and imaginary
part would have slightly different values.

Solution:
The time period from t = 0 to £ = 0. 1 corresponds to four windows, each with 5 samples each. x(t)
contains different sinusoidal components during each window.

Let wq(t) = 190.025), W2(t) = 1[0.025,0.05) W3(t) = 1[0.050.075) and w,(t) = 19 75,0.1) Where
1 _ {1 a<t<bh
[@B) ~ 10 otherwise

Then, we can express x(t) as a sum of transient sinusoidal components:
x(t) = sin?(2m 20 t) w4 (t) + sin(2m 80 t) w,(t) + — sin(2m 40 t) w5 (t)
x1(8) x2(t) x3(0)
+ —sin?(2m 40 t) w, (1)
x4(0)

Since sin? @ = 0.5 — 0.5 cos(20),
x1(t) =0.5—-0.5 cos(2mr 40¢t), x4(t) = —-0.5+0.5 cos(2mr 80 t)

By examining the frequency components in each window, we can determine which plots correspond
to which STFT components.

Col. Time [seconds] Time [samples] Signal value Frequencies present
1 0<t<0.025 0<n<5 0.5—-0.5 cos(2wr401t) 0 Hz, +40 Hz
2 0.025 <t<0.05 5<n<10 sin(2m 80 t) +80 Hz
3 0.05<t<0.075 10<n<15 —sin(2m 40 t) +40 Hz
-0.5
< <
4 0.075<t<1 15<n<20 +0.5 cos(2mw 80 ©) 0 Hz, +80 Hz

For a real signal, the Fourier series is conjugate symmetric. Therefore, the imaginary component of
a real signal is always zero at 0 Hz. Only plot (1) is zero at 0 Hz for all values of time. Plot (1)
corresponds to the imaginary component.

The magnitude of a complex number is non-negative. Only plot (2) is non-negative. Plot (2)
corresponds to the magnitude component.

The phase is zero for a DC offset and i for a negative DC offset. Plot (3) corresponds to the phase.
The real component at 0 Hz is the average value. The average value of x(t) is 0.5 in the first

window, 0 in the second and third windows, and -0.5 in the last window. Plot (4) corresponds to the
real part.



Matlab code to produce the plots for problem 1.4.

fs = 200;
t = linspace(0,0.1,1000) ;
nTs = linspace(0,0.1-1/fs,0.1*fs);

wl = @(t) 1.0*(0<=t & t<0.025);

w2 = @Q(t) 1.0*(0.025<=t & t<0.05);
w3 = @Q(t) 1.0*(0.05<=t & t<0.075);
wd = Q(t) 1.0*(0.075<=t & t<=0.1);
x1 = Q(t) 0.5-0.5*cos (2*pi*40*t) ;
x2 = Q(t) sin(2*pi*80*t);

x3 = Q(t) -sin(2*pi*40*t);

x4 = Q(t) -0.5+0.5*cos (2*pi*80*t) ;

x = @(t) x1(t).*wl(t) + x2(t).*w2(t) + x3(t).*w3(t) + x4(t).*wd(t);
figure; plot(t,x(t),'-k','linewidth',1.2);

hold on; stem(nTs,x(nTs),'filled',6 'k', 'linewidth',1l, 'MarkerSize',3);
xlabel ('Time [seconds]', 'Interpreter', 'latex')

ylabel ('$$x(t)$S$', 'Interpreter', 'latex')

set(gca, 'TickLabelInterpreter', 'latex’)

ylim([-1,1])

set (gca, 'XTick',[0,0.025,0.05,0.075,0.1]) ;

grid on;

X reshape (x (nTs) ,5,4) ;

S = (1/5)*fftshift (££t(X),1);

x = [0,0.025,0.05,0.075];

y = [80,40,0,-40,-80];

Sr = real(S); Sr(abs(Sr)<le-5) = 0;

figure; heatmap(x,y,Sr); colormap('gray'); colormap(flipud(colormap)); caxis([-
1,11);

xlabel ('Time [s]'); ylabel ('Frequency [Hz]')
set (gca, 'Interpreter', 'latex')
title('(4)"')

Si = imag(S); Si(abs(Si)<le-5) = 0;

figure; heatmap(x,y,Si); colormap('gray'); colormap(flipud(colormap)); caxis([-
1,11);

xlabel ('Time [s]'); ylabel ('Frequency [Hz]')

set(gca, 'Interpreter', 'latex')

title('(1)"'")

Sm = abs(S); Sm(abs(S)<le-5) = 0; Sm(abs(Sm-0.5)<1le-5) = 0.5;

figure; heatmap (x,y,Sm) ; colormap('gray') ; colormap (flipud(colormap)) ;
caxis ([0,1]);

xlabel ('Time [s]'); ylabel('Frequency [Hz]')

set(gca, 'Interpreter', 'latex')

title('(2)"')

Sp = angle(S); Sp(abs(Sp)<le-5) = 0; Sp(abs(S)<le-5) = nan;

figure; heatmap(x,y,Sp); colormap('gray'); colormap(flipud(colormap)); caxis([-
pi,pil);

xlabel ('Time [s]'); ylabel ('Frequency [Hz]')

set (gca, 'Interpreter', 'latex')

title('(3)"')



